If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x=198
We move all terms to the left:
x^2+x-(198)=0
a = 1; b = 1; c = -198;
Δ = b2-4ac
Δ = 12-4·1·(-198)
Δ = 793
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{793}}{2*1}=\frac{-1-\sqrt{793}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{793}}{2*1}=\frac{-1+\sqrt{793}}{2} $
| 2x²-18=32 | | 20=-5+(-d) | | -3(x-2)=x-4 | | i2-10i+24=0 | | 3e-10=2e-10 | | 3(x+8)=15+6x | | x^2+9x,A=0 | | 180°=35°+14x+5 | | 5y2-23y+12=0 | | -0.5•x=6 | | -28.3+6y=10.1 | | 3x-5=~11 | | -158=k-253 | | F(-5)=2x+- | | q-(-185)=543 | | n-1,000=-947 | | 816=w-(-747) | | -24p=-336 | | (4x-5)(4x-3)=143 | | 300+50x=1000 | | (2x)^(4x)-1=0 | | -248=-31n | | d+256=-419 | | b+-858=-86 | | 3n2-n= | | -16=c+-566 | | -12=4-x/3 | | -9/p=28 | | (2x+17)(3x+7)=180 | | (2x+17)°(3x+7)°=180° | | f=-8-3 | | 2-x/3-5+2x/2=3x+1/4+1-x/6 |